Numerical Analysis and Asymptotic Behaviour of a Family of Simultaneous Distributed-Boundary Mixed Elliptic Optimal Control Problems

Domingo A. Tarzia
Universidad Austral and CONICET, Argentina
DTarzia@austral.edu.ar

Abstract

In this paper, we consider a family of simultaneous distributed-boundary optimal control problems $\left(P_{\alpha}\right)$ on the internal energy and the heat flux for a system governed by a mixed elliptic variational equality with a parameter $\alpha>0$ (the heat transfer coefficient on a portion of the boundary of the domain) and a simultaneous distributed-boundary optimal control problem (P) governed also by an elliptic variational equality with a Dirichlet boundary condition on the same portion of the boundary. We formulate discrete approximations $\left(P_{h \alpha}\right)$ and $\left(P_{h}\right)$ of the optimal control problems $\left(P_{\alpha}\right)$ and (P) respectively, for each $h>0$ and for each $\alpha>0$, through the finite element method with Lagrange's triangles of type 1 with parameter h (the longest side of the triangles). The goal of this paper is to study the convergence of this family of discrete simultaneous distributed-boundary mixed elliptic optimal control problems $\left(P_{h \alpha}\right)$ when the parameters α goes to infinity and the parameter h goes to zero simultaneously. We prove the convergence of the family of discrete problems $\left(P_{h \alpha}\right)$ to the discrete problem $\left(P_{h}\right)$ when $\alpha \rightarrow+\infty$, for each $h>0$, in adequate functional spaces. We study the convergence of the discrete problems $\left(P_{h \alpha}\right)$ and $\left(P_{h}\right)$, for each $\alpha>0$, when $h \rightarrow 0^{+}$ obtaining a commutative diagram which relates the continuous and discrete simultaneous distributed-boundary mixed elliptic optimal control problems $\left(P_{h \alpha}\right),\left(P_{\alpha}\right),\left(P_{h}\right)$ and (P) by taking the limits $h \rightarrow 0^{+}$and $\alpha \rightarrow+\infty$ respectively. We also study the double convergence of $\left(P_{h \alpha}\right)$ to (P) when $(h, \alpha) \rightarrow\left(0^{+},+\infty\right)$ which represents the diagonal convergence in the above commutative diagram.

This is a joint paper with Carolina Bollo and Claudia Gariboldi (UNRC, Argentina).

